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Abstract

Automatic extraction of facial feature deformations (ei-
ther due to identity change or expression) is a challenging
task and could be the base of a facial expression interpre-
tation system. We use Active Appearance Models and the
simultaneous inverse compositional algorithm to extract fa-
cial deformations as a starting point and propose a modified
version addressing the problem of facial appearance varia-
tion in an efficient manner. To consider important variation
of facial appearance is a first step toward a realistic fa-
cial feature deformation extraction system able to adapt to a
new face or to track a face with changing video conditions.
Moreover, in order to test fittings, we design an experiment
protocol that takes human inaccuracies into account when
building a ground truth.

1. Introduction

Facial expression is one of the most powerful, natural
and immediate means for human beings to communicate
their emotions and intentions ([6]). Psychological and lin-
guistic studies or applications in Human-Computer Interac-
tion focus on the interpretation of its communicational con-
tent. An automatic, efficient and accurate facial expression
extraction system would thus be a powerful tool, for these
applications or studies.

Since the seminal work of Cootes, Active Appearance
Models (AAM) ([3]) have been heavily used to model or
track deformable objects and particularly faces ([4, 3, 9, 8]).
Matthews et al. recently proposed ([8]) the inverse compo-
sitional algorithm, able to fit an AAM onto an image. Our
choice to implement this algorithm was initially motivated
by its mathematical correctness. Contrary to [4, 3], the op-
timization problem is solved using analytically derived gra-
dients, rather than using a numerical estimate. Such proper-
ties increase the method reliability as shown in [8].

A first implementation considers shape deformations
only and leaves fixed the appearance. It is very efficient

and runs in real-time. Unfortunately, such a trivial situa-
tion is unlikely: a face is particularly subject to appearance
variations from a still image to another, or between frames
along a video sequence.

As this problem must be addressed, the authors proposed
two other implementations of their algorithm. The first,
called project out algorithm, deals with shape deformations
as well as appearance variations without increasing compu-
tational costs. However it can only deal with appearance
variations when they are extremely subtle, which is, one
more time, very unlikely.

A second solution, called the simultaneous algorithm
([1]), provides far more satisfactory results ([5]). It opti-
mizes simultaneously shape and appearance parameters of
an AAM placed onto a new image. Its major drawback is
its computational cost as the algorithm performs around 30
times slower than the project out.

In this paper we investigate the possibility to abandon
the poor performing project out algorithm and to rely only
on a modified version of the simultaneous algorithm, oppor-
tunely reformulated to increase its efficiency.

We compare the fitting accuracy of the simultaneous al-
gorithm and our version by measuring a distance of the fit-
ting to a ground truth. We propose here to rely on a statis-
tically built ground truth and on a fitting error that takes the
lack of localization accuracy of facial features into account.

We first introduce Active Appearance Models and the
way they can be used to extract facial feature deformations
in section 2. Section 3 covers the appearance variation mod-
elling. Section 4 presents our modification to the algorithm
and section 5 how it can be integrated into the simultaneous
algorithm. The experiment protocol and results are given in
section 6. Finally section 7 gives a conclusion and direc-
tions for future works.

2. Background

Faces and their variations in shape and appearance can
be modelled by Active Appearance Models: a mean shape



associated with a mean appearance, where linear deforma-
tions are added to them. The two subspaces of shape and
appearance variations are typically obtained by a principal
component analysis on a previously hand-labelled training
set.

2.1. Generative models

An Active Appearance Model describes an object of a
predefined class as an instance of shape and an instance of
appearance. Each object, for a given class, can be repre-
sented by its shape, described by vertex coordinates and an
appearance, described by pixel intensities. It is defined by:

1. a shape s = s0 +
∑n

i=1 pisi, where s0 is the mean
shape, si are shape deformation vectors and pi are co-
efficients that weight deformations; the basis formed
by all the si vectors is referred to as S;

2. an appearance A(x) = A0(x)+
∑m

i=1 λiAi(x), where
A0(x) is the mean appearance image, Ai(x) are the
appearance variation vectors and λi are their weighting
coefficients.

In many implementations, a shape deformation is di-
vided into a global shape deformation, corresponding to 2D
similarities (rotation, translation and scale of the model) and
a deformation of internal features. Global shape deforma-
tion vectors are here referred to as s∗

i forming the S∗ basis.
To refer to all the shape deformation parameters, we intro-
duce v as being the stacking of a vector q (global shape
deformation parameters) and a vector p (internal shape de-
formation parameters).

We introduce a general notation Γ = Γ0 +
∑

i ωiΓi

where Γ(i) stands for A(i)(x), s(i) or s∗
(i) indifferently and

ω for λ, p, q or v.

2.2. The inverse compositional algorithm

Algorithms based on the AAM paradigm address a solu-
tion to the problem of face fitting and facial feature defor-
mation extraction by finding a configuration of shape and
appearance on a new image, which minimizes some error
measurement.

The formulation given by Baker et al. in [8] is based
on the Lucas-Kanade image alignment algorithm ([2]), ex-
tended to piecewise affine warps. The inverse composi-
tional algorithm aims at minimizing the sum of the squared
errors:∑

x∈s0

[E(x)]2 =
∑
x∈s0

[T (x) − Proj(I(x, s)s0)]
2 (1)

where I(x, s) is the region of interest of the input image
I(x) lying into the shape s and Proj(.)s0 is a projection

Figure 1. Illustration of the inverse compositional
algorithm. Given a current estimate of the shape
s†, the mean shape s0 has to be modified by
∆s0 (computed from ∆v) in order to make it,
with the template appearance T (x), closer to
Proj(I(x, s†))s0 . The shape modification ∆s0 must
be applied to s† by inversion and composition to
obtain a new shape.

of this ROI to the mean shape s0 and T (x) is the template
appearance image.

This is a non-linear optimization problem, solved by an
iterative Gauss-Newton method. Assuming initial shape
parameters v forming an initial shape estimation s† are
known, they are updated at each iteration by ∆v, in or-
der to minimize the error function. Rather than updating
the shape parameters in a “forward way” (v ← v + ∆v),
the inverse compositional algorithm updates them by inver-
sion and composition: ∆v expresses shape deformations
that have to be applied to the mean shape s0 and the next
estimated shape s† is obtained by inversion and composi-
tion (see Fig. 1).

At each iteration, ∆v is obtained from eq. 1 by:

∆v = H−1
∑

x

SD(x)T E(x) (2)

where:

SD(x) = ∇T
δProj

δv
(3)

H =
∑

x

[
∇T

δProj

δv

]T [
∇T

δProj

δv

]
(4)

and where ∇T is the image gradient of the template appear-
ance T (x), and δProj

δv is the analytically derived Jacobian of
Proj (see [8] for the computation details).

Such a formulation allows the precomputation of deriva-
tives: the matrix of first partial derivatives (Jacobian), the



Figure 2. On the left: intermediate shape config-
uration obtained after some iterations without pro-
jection, leading to divergence. On the right: the
same intermediate shape configuration when us-
ing a projection, leading to convergence.

image gradient, and the approximation of the Hessian ma-
trix are precomputed, leading to an efficient algorithm.

According to Fig. 1, the new shape s† can be used di-
rectly in the next iteration. But, due to the approximation of
the warping inversion and composition, which is not well-
defined for piecewise affine warps (it can be well-defined
when a dense model is used – see [9] for details), errors are
accumulated during iterations and lead to shape configura-
tions that might be subject to divergence (see Fig. 2).

In our implementation, we thus re-project the shape s†

onto the learnt shape subspaces to smooth accumulated er-
rors. Such a process could also be used to verify whether
the obtained shape is a plausible one (relatively to the train-
ing set). We do not assume the similarity basis S∗ and the
shape basis S to be orthogonal, as it is done in [8] (i.e., find
q = S∗T (s† − s0) then find p = ST (s† −S∗q − s0)). We
prefer to use the exact formulation:

[p, q]T = (V T V )−1V T (s† − s0) (5)

where V = [S,S∗] are the two concatenated basis (simi-
larity and shape). Moreover, this latter formulation involves
less computation than the former, assuming (V T V )−1 is
precomputed.

3. Modelling appearance variation

The original inverse compositional algorithm does not
treat appearance variation : the face to fit has to be a (piece-
wise affine) warped version of the template appearance.
Obviously, this cannot be assumed in realistic cases.

Appearance variation is a relevant problem that occurs
when nothing is known about the identity of the face to fit
on a still image or when appearance changes between two
video frames.

Shape deformations of a 2D model can only represent
expressions that involve in-plane feature point displace-
ments. Expressions involving out-of-plane feature point

The Simultaneous Inverse Compositional Algorithm
Iterate:

(1) Compute Proj(I(x, s†))s0 .
(2) Compute the error image E(x).
(3) Compute the gradient SDsim(x).
(4) Compute the Hessian matrix H and invert it.
(5) Compute

∑
x SDT

sim(x)E(x).
(6) Compute [∆v,∆λ]T = −H−1

∑
x SDT

sim(x)E(x).
(7) Update the new shape s† with ∆v and λ ← λ + ∆λ.

Figure 3. Essential iterative steps of the simultane-
ous inverse compositional algorithm.

displacements (like cheek puffing for example) are repre-
sented by appearance variation within the image formation
process.

An efficient way to address the problem of appearance
variation has been proposed in ([8, 1]), called the project-
out inverse compositional algorithm. The appearance pa-
rameters are assumed not to vary significantly. The shape
deformations are considered in a subspace where the ap-
pearance does not change. The new appearance parameters
can then be “projected-out” once the shape parameters con-
verged.

The version of the algorithm addressing significantly ap-
pearance parameter variations (Simultaneous inverse com-
positional in [1]) find optimal appearance and shape param-
eters simultaneously by minimizing the sum of the squared
errors:

∑
x∈s0

[E(x)]
2

=
∑
x∈s0

[
A0(x) +

m∑
i=1

λiAi(x) − Proj(I(x, s
†
))s0

]2

where A0(x) +
∑m

i=1 λiAi(x) now plays the role of the
template appearance image.

This is a very slow algorithm due to the need of com-
putation at each iteration (see Fig. 3). The steepest descent
images depend on the current appearance parameters and
must be computed at each iteration (see [1] for details), as
well as the Hessian matrix and its inverse which depend on
the steepest descent images.

Because the Hessian computation and inversion (step 4)
is the most computationally involving step, we propose here
an efficient algorithm to by-pass it.

4. Coefficient regulator

In the original simultaneous algorithm, the inverse Hes-
sian estimates the error function curvature, allowing to ap-
proximate this function by a second order polynomial func-
tion and the step is adapted consequently to optimize the
descent.



4.1. Algorithm

In our modified version of the simultaneous, the basical
idea consists in replacing the computation of the update at
iteration t (step (6) on figure 3) by the new one :

[∆v(t),∆λ(t)]T = −C(t − 1) �
∑

x

SDT
sim(x)E(x)

Where � is the element-wise product and C is a (n+m)
long vector of weighting coefficients ci that aims at regulat-
ing the step along the Γi directions. For each Γi direction
we only consider the descent sense indicated by the sign of
∆ωi(t)(= ∆ωi(t) − ωi(t − 1)).

As long as ωi(t) progresses in the same sense across
iterations, we foster its progression by applying ci(t) ←
ci(t − 1)ηinc.

When the sense of search of ωi(t) is inverted (i.e.,
∆ωi(t) has an opposite sign with respect to ∆ωi(t − 1)),
it means we passed a minimum of the error function along
the Γi direction. ωi(t) has then to pass back onto this min-
imum with a lower speed i.e., we decrease the weighting
coefficient ci(t) value with respect to its previous value,
ci(t) ← ci(t − 1)/ηdec.

The global routine is summarized by:

for i = 1 to n + m do
if ∆ωi(t − 1)∆ωi(t) > 0 then

ci(t) ← ci(t − 1)ηinc

else
ci(t) ← ci(t − 1)/ηdec

end if
end for

The ηinc and ηdec constants are determined empirically.
One pair is used to regulate the shape coefficients (we use
ηdec = 2.3 and ηinc = 1.2) and another one to regulate the
appearance coefficients (we use ηdec = 6 and ηinc = 2.7).

4.2. Initialization

The starting coefficient C(t0) is computed from the in-
verse Hessian matrix, which is precomputed:

C(t0) = (
1
a1

, . . . ,
1

an+m
)T � (H−1a)

where a = (
∑

x SDT
simE(x))

Without additional computational costs, the regulator
can then take advantage of the first step size given by H−1.

5. Modified simultaneous inverse composi-
tional algorithm

At step (4) of the algorithm, the coefficient regulator is
used instead of the Hessian inverse which greatly increase

computation speed as it is evaluated in O(n + m) against
O((n + m)2) when the Hessian is used.

5.1. Theoretical complexity

Referring to [1], the computational cost of the simultane-
ous inverse compositional algorithm is in O((n + m)2N +
(n+m)3) per iteration, where n is the number of shape pa-
rameters (including similarity), m is the number of appear-
ance parameters and N is the resolution of the (s0-shaped)
image.

With the modified version we propose here, the step (4)
is equivalent to the evaluation of the regulator (O(n + m))
and the step (6) is in O(n + m), where a (n + m) vector is
evaluated, instead of O((n+m)2), where a (n+m)× (n+
m) matrix is evaluated.

The total computational cost per iteration is now O(n2 +
(m + n)N) instead of O((n + m)2N + (n + m)3).

5.2. Practical efficiency

We compare the two algorithms in terms of computa-
tional time and find our modified version to be about 6 times
faster per iteration than the original one in our implementa-
tions (with N = 9268, n = 24 and m = 30). The com-
putational time for the evaluation of the regulator can be
neglected before the computation of the Hessian in the si-
multaneous algorithm. Other parts of both algorithms are
common but not optimized, we can therefore hope to see
further increase of the speed factor.

6. Empirical evaluation

In this section, we propose to compare performances be-
tween the original simultaneous algorithm and our version
using the coefficient regulator.

6.1. Fitting error

Across iterations, we measure how both algorithms fit
faces, by using a fitting error based on vertex distances to a
given ground truth shape.

It is usual in literature to see validation tests based on
biased ground-truth towards the method to be tested. In [8],
for example, the ground-truth is built with the method to be
tested, leading automatically to biased data.

To test the quality of an AAM fitting onto a face image,
methods other than visual control are difficult to build. A
common mistake consists in benchmarking the fitting result
against a manual labelling: it is incorrect to claim that a
manual labelling is objectively better than another one.



We introduce a statistical-based method to build the
ground truth data. A fitting error is given to a labelling, ei-
ther manual or automatic, taking into account the degree of
accuracy of human experts to manually localize each AAM
vertex.

To define the ground truth shape and the fitting error, we
rely on a high number nL of expert labels for each of the
nI face images. In this way, a probability distribution can
be computed on each of the nV vertices. For each image
i, the mean µi,v of each vertex v is computed over its nL

labels, defining the ground truth shape (µi,1, . . . ,µi,nV
).

The covariance Σv is computed over the nL×nI labels, for
each vertex v, considering the distance of each label xi,v,l

to its corresponding mean µi,v.

µi,v =
1

nL

nL∑
l=1

xi,v,l

Σv =
1

nInL − 1

nI∑
i=1

nL∑
l=1

(xi,v,l − µi,v)T (xi,v,l − µi,v)

A spread distribution (i.e., having high variances σx and
σy) means a vertex hard to localize or not well-defined. A
concentrated distribution (i.e., having low variances) means
a vertex well-defined. The idea is to score a labelling (either
human or automatic) with respect to the distribution of each
vertex coordinates: the higher are the variances, the less is
penalized a localization inaccuracy. The obtained covari-
ances are represented by ellipses on Fig. 6.3(e).

The fitting error ei(s) of a shape s on an image i, is
defined by the average of the Mahalanobis distances:

ei(s) =
1

nV

nV∑
v=1

√
(sv − µi,v)T Σ−1

v (sv − µi,v) (6)

where sv is the vth vertex of the shape s.

6.2. Experiment protocol

We collected 40 images from the AR database ([7])
containing only frontal faces, without expression and with
global fixed illumination. To build our training set, we man-
ually labelled 11 times (to define the ground truth shape)
each image with a landmark configuration describing a
mesh equivalent to the one used in [8].

We distinguished two tests. On the first test, we used the
40 ground truth shapes to compute the shape deformation
and appearance variation statistics. We ran both algorithms
on each image of the training set. As this image contributed
to the statistics computation, we will refer to this test as the
“known faces test”.

The second is a leave-one-out test, where, for each test
image, the statistics is built on the remaining 39 images. We

thus test the generalization ability of both algorithms. It will
be referred to as the “unknown faces test”.

Anytime a statistics is built, we retain enough shape and
appearance eigenvectors to explain 95% of the total vari-
ance contained in the training set.

As an initial configuration given to the algorithms, we
took the ground truth shape associated to the test image, we
extracted the corresponding 2D similarity and shape param-
eters by projection onto the shape subspaces (see eq. 5) and
we set to zero the shape parameters, simulating an initial
configuration that could be obtained by a face and feature
detector.

For each test image we launched both algorithms and
record the error at each time unit. The mean error over all
test images is plotted on Fig. 4.

We compare the fitting error to the one obtained by hu-
man experts. For each image, a fitting error is associated
to each of the 11 manual labellings, according to the eq. 6.
We retain the minimum, maximum and average of the 11
labellings for each image. Their mean over all images is
superimposed on Fig. 4.

6.3. Results

For the fitting algorithms, performances can be evaluated
as the ability to reach the lowest error fitting as fast as pos-
sible and to stay as close as possible to this minimum error.

On the known faces test, the Hessian-based simultaneous
algorithm performs better than the regulated, as it reaches
faster a lower minimum.

In the unknown faces test, fittings are never as accurate
as those obtained in the previous test as can be expected. In
both cases, minimum is reached after an equivalent process-
ing time. The Hessian-based algorithm reaches a slightly
lower minimum. However, visual fitting differences are
weak as can be observed in Fig. 5.

Contrary to the previous test where the error function
E(x) simultaneously decreases with the fitting error (not
shown due to lack of space), we often observe that mini-
mizing the error function does not correspond to a better
fitting. Consequently, reaching of a minimum error fitting
does not imply the fitting to stabilize on this minimum: we
observe a rise of the fitting error passed the minimum. The
observed rise of the Hessian-based algorithm is greater than
the rise of the regulated, showing a better stability for our
regulated solution.

7. Conclusion and future works

As an issue to the relevant appearance variation problem,
we proposed an algorithm1, based on the inverse composi-
tional algorithm, similar to the simultaneous version. In

1All resources and data are available on the authors’ website



(a) (b) (c) (d) (e)

Figure 5. (a) Typical fitting obtained by the Hessian-based on known faces (e(s) = 1.16). (b) and (c) are the
best fittings obtained on unknown faces when the minimum error is reached for both the Hessian-based
(e(s) = 2.45) and the regulated (e(s) = 2.55). (d) represents a fitting obtained on a rise (e(s) = 3.46). The
ground truth shape is plotted in dashed lines.

(e) Labelling accuracy illustration on the mean face for each vertex.

our version the computation of the most involving step is
avoided. The resulting complexity is lesser than the orig-
inal one. Each iteration of our algorithm is still less ac-
curate than the simultaneous algorithm, but the resulting
global computational times are equivalent to reach a min-
imum when the faces are not known.

We proposed a test protocol based on a fitting error that
scores accuracy with a tolerance equivalent to these of hu-
man experts.

The rise of error fitting observed for the unknown faces
test is probably due to the inability of algorithms to deal
with non-Gaussian noise, introduced by face features which
are unknown to the statistics. We will therefore investigate
the use and effects of a robust error function.

Our solution only considers the descent sense of search
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Figure 4. Fitting error evolution across time, for
both the known and unknown faces tests.

along the shape deformation and appearance variation di-
rections. We think it can be developed by also considering
other characteristics to improve the optimization properties.

It has also to be compared to other variants of the in-
verse compositional algorithm, as those described in [2]:
particularly the steepest descent minimization and the diag-
onal Hessian approximation.
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