

Toward an Efficient and Accurate AAM Fitting on Appearance Varying Faces

Hugo MERCIER¹, Julien PEYRAS², Patrice DALLE¹

¹IRIT - équipe TCI, UPS, 118 route de Narbonne F-31062 Toulouse Cedex 9, FRANCE {mercier,dalle}@irit.fr

²Dipartimento di Scienze dell'Informazione, via Comelico 39/41I-20135 Milano, ITALIA peyras@dsi.unimi.it

Motivations	AAM for facial modelling
 Use of Active Appearance Models within the inverse compositional framework [Baker & Matthews]. Problem of appearance varying faces: fitting unknown faces or tracking appearance varying sequences. The best known solution (simultaneous inverse compositional) lacks efficiency. Intention: Decrease the computational cost of the simultaneous algorithm. The method test leads to a new definition of the ground truth shape. 	 A facial AAM combines : 1. a shape s = s₀ + Σⁿ_{i=1} v_is_i, 2. an appearance A(x) = A₀(x) + Σ^m_{i=1} λ_iA_i(x). with the s_i and A_i(x) variation modes obtained from a previously labelled image collection. Given initial parameters [v₀, λ₀], the fitting goal is to find [v, λ] that best models the face on an input image.

The original step, Hessian-based [Baker & Matthews]

$$[\Delta \boldsymbol{v}, \Delta \boldsymbol{\lambda}]^T = -\boldsymbol{H}^{-1} \sum_{\boldsymbol{x}} SD^T(\boldsymbol{x}) E(\boldsymbol{x})$$

where

$$\boldsymbol{H} = \sum_{x} SD(x)^{T}SD(x)$$

and is computed in $O((n+m)^2N)$ for n shape vectors, m appearance vectors and a s_0 image resolution of N pixels.

The proposed computation, regulation based

$$[\Delta \boldsymbol{v}(t), \Delta \boldsymbol{\lambda}(\boldsymbol{t})]^T = -\boldsymbol{C}(t-1) \odot \sum_{\boldsymbol{x}} SD^T(\boldsymbol{x})E(\boldsymbol{x})$$

The c_i coefficients are computed in the following manner:

for
$$i = 1$$
 to $n + m$ do
if $\Delta \omega_i(t-1)\Delta \omega_i(t) > 0$ then
 $c_i(t) \leftarrow c_i(t-1)\eta_{inc}$
else
 $c_i(t) \leftarrow c_i(t-1)/\eta_{dec}$
end if
end for

where the computation is negligible compared to $O((n+m)^2N)$. $\Delta \omega_i$ stands for either Δv_i or $\Delta \lambda_i$. The parameters η_{inc} and η_{dec} are empirically fixed.

- Performance comparison between the Hessianbased algorithm and our version.
- Test of two fitting features on both known and unknown frontal neutral faces: **accuracy** and efficiency.

Introduction of a statistical-based method to build the ground truth data. Each face has been manually labelled 11 times.

Score a labelling with respect to the variance of each vertex coordinates.

The fitting error $e_i(\mathbf{s})$ of a shape \mathbf{s} on an image *i*, is defined by the average of the Mahalanobis distances between the obtained vertex location s_v and its ground truth definition $\mu_{i,v}$, for all n_V vertices:

$$e_i(\boldsymbol{s}) = \frac{1}{n_V} \sum_{v=1}^{n_V} \sqrt{(\boldsymbol{s}_v - \boldsymbol{\mu}_{i,v})^T \boldsymbol{\Sigma}_v^{-1} (\boldsymbol{s}_v - \boldsymbol{\mu}_{i,v})}$$

Representation of the covariance Σ_v by an ellipse, for each vertex, here displayed on the mean face

Results

■ Iteration time is different for the regulated (faster) and the Hessian-based. Algorithm performances are thus compared at same units of processing time.

1 and **2** are typical fittings obtained on known faces by the Hessian-based and the regulated algorithms.

Fitting error evolution accross time.

In the known faces test, the Hessian-based algorithm performs better than the regulated, as it reaches faster a lower minimum.

In the unknown faces test, minima are reached after an equivalent processing time for the two algorithms. The fitting quality is almost equivalent.

3

3 and **4** are the best fittings obtained on unknown faces for both the Hessian-based and the regulated.

Future works

In the unknown faces test, the rise of fitting error is due to the inability of algorithms to deal with non-Gaussian noise. We will investigate on the use of a robust error function.

The processing time to reach a minimum has to be compared for different values of n, m and N.

It has to be compared to other variants of the inverse compositional algorithm, particularly the steepest descent minimization and the diagonal Hessian approximation.