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Abstract. The work presented here takes place in the field of computer
aided analysis of facial expressions displayed in sign language videos.
We use Active Appearance Models to model a face and its variations
of shape and texture caused by expressions. The inverse compositional
algorithm is used to accurately fit an AAM to the face seen on each video
frame. In the context of sign language communication, the signer’s face
is frequently occluded, mainly by hands. A facial expression tracker has
then to be robust to occlusions. We propose to rely on a robust variant
of the AAM fitting algorithm to explicitly model the noise introduced
by occlusions. Our main contribution is the automatic detection of hand
occlusions. The idea is to model the behavior of the fitting algorithm on
unoccluded faces, by means of residual image statistics, and to detect
occlusions as being what is not explained by this model. We use residual
parameters with respect to the fitting iteration i.e., the AAM distance
to the solution, which greatly improves occlusion detection compared to
the use of fixed parameters. We also propose a robust tracking strategy
used when occlusions are too important on a video frame, to ensure a
good initialization for the next frame.
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1 Introduction

We use a formalism called Active Appearance Models (AAM – [1, 2]) to model
a face and its variations caused by expressions, in term of deformations of a
set of vertex points of a shape model. These points can be tracked with a good
accuracy along a video when the face is not occluded and when it has been
learned beforehand.

We focus here on the analysis of sign language videos. In sign language, facial
expressions play an important role and numerous signs are displayed near the
signer’s face. Furthermore, the signer’s skull frequently performs out-of-plane
rotations.This implies, from the interlocutor’s point of view (here replaced by
the video acquiring system) that face might often be viewed only partially.

Past works mainly focused on robust variants of AAM fitting algorithms ([3],
[4]) able to consider outlier data. We follow here the approach developed in [5],



where parametric models of residual image are used in order to automatically
detect the localization of occlusions. The main idea is here to learn various
parameters computed from various fitting contexts and to select one in particular
at each iteration, which greatly improves occlusion detection compared to the
use of only one fixed parameter in earlier work,

In section 2 are presented Active Appearance Models and the way they are
used to extract facial deformations of a face with an accurate optimization al-
gorithm that can take occlusions into account by means of a pixel confidence
map. In section 3 we show, through experiments, how to optimally compute the
pixel confidence map to detect occlusions. Section 4 describes a robust tracking
strategy that we use to track facial deformations along a video sequence.

2 Active Appearance Models

An Active Appearance Model (AAM) describes an object of a predefined class
as a shape and a texture. Each object, for a given class, can be represented by
its shape, namely a set of 2D coordinates of a fixed number of interest points,
and a texture, namely the set of pixels lying in the convex hull of the shape.

The shape can be described by:

s = s0 +
n∑

i=1

ps
i si (1)

where s0 is the mean shape, si are deformation vectors and ps
i are weighting

coefficients of these deformations. It can be written in matrix notation by s =
s0 + Sps.

The texture is described by:

t = t0 +
m∑

i=1

pt
iti (2)

or, in matrix notation t = t0 + Tpt

The model is built upon a training set of faces, where a shape i.e., 2D coordi-
nates of a fixed set of interest points, is associated to each image. All the shapes
are extracted from the training set and global geometric deformations are dif-
ferentiated from facial deformations by a Procrustes analysis. It results a mean
shape s0 and shapes that differ from the mean only by internal deformations.

Pixels that lie inside the shape of each face is then extracted and piecewise-
affine-warped to the mean shape s0 to build the (shape-free) texture associated
to a face.

Principal Component Analysis is applied both to aligned shapes and aligned
textures and the eigen-vectors form the matrices S and T. In our case, we retain
enough eigen-vectors to explain 95% of the shape and texture variance (corre-
sponding to 12 shape deformation vectors and 15 texture variation vectors).

A face close to the training set can then be represented by a vector of shape
parameters ps and a vector of texture parameters pt.



2.1 Weighted Inverse Compositional Algorithm

The goal of the AAM fitting algorithm is to find ps and pt that best describes the
face seen on an input image. The shape and texture parameters are optimized
by means of a residual image that represents differences between a current face
estimation and the face seen on the input image I:

E(x) = t0(x) +
m∑

i=1

pt
iti(x)− I(W (x;ps)),∀x ∈ s0 (3)

I(W (x,ps)) is the projection of the input image onto the mean shape s0,
obtained by a piecewise affine warp. Instead of the Euclidean norm classically
used in optimization, we can use a weighted distance:∑

x

Q(x)E(x)2

where Q(x) weights the influence of the pixel x.

We use the optimization scheme presented in [2], called the inverse composi-
tional algorithm, which is efficient and accurate. Its main advantage is the fact
that the jacobian matrix can be analytically derived, rather than learned by
numerical differentiation (like in [1]).

Among all the variants proposed by the authors, we choose the simultaneous
inverse compositional algorithm with a weighted distance. The simultaneous is
a variant that can optimize both shape and texture parameters in an accurate
manner. This is not the most efficient variant of the inverse compositional al-
gorithms that can deal with texture variations (see for instance the project-out
algorithm in [2]), but the most accurate.

Iterative update is given by (computation details can be found in [3] and [6]):

[∆ps,∆pt] = −H−1
Q

∑
x

Q(x) [Gs(x), Gt(x)]E(x) (4)

with

Gs(x) =
[
(∇t0(x) +

∑m
i=1 pt

i∇ti(x)) ∂W
∂ps

1
, . . . , (∇t0(x) +

∑m
i=1 pt

i∇ti(x)) ∂W
∂ps

n

]
Gt(x) = [t1(x), . . . , tm(x)]
HQ =

∑
x Q(x) [Gs(x), Gt(x)]T [Gs(x), Gt(x)]

Shape parameters are then updated by inversion and composition:

W (x;ps)←W (x;ps) ◦W (x;∆ps)−1

And texture parameters are updated in an additive way by pt ← pt + ∆pt.
Essential steps of the algorithm are summarized on Fig. 1.

This algorithm performs accurately. For our experiments, we use what is
called a person-specific AAM, meaning that the training set is composed by
expressions of only one person. A more generic AAM would be less accurate and
hard to control.



Fig. 1. Essential steps of the weighted simultaneous inverse compositional algorithm.
Numbers give chronology of the steps for one iteration.

3 Occlusion Detection

The confidence map Q(x) used in the weighted variant of the AAM fitting algo-
rithm has to be as close as possible to the real occlusion map.

Our problem is to compute the best confidence map without knowledge on
the localization of real occlusions. We propose here to model the behavior of the
residual image in the unoccluded case and to detect occlusions as being what is
not explained by the model, following the approach presented in [5].

3.1 Parametric Models of Residuals

We rely on parametric models of the residual image. We propose to test different
confidence map computation functions:

Q1(x) =
{

1 if min(x) ≤ E(x) ≤ max(x)
0 else

Q2(x) =
1

σ(x)
√

2π
e

„
− E(x)2

2σ(x)2

«

Q3(x) =
{

1 if |E(x)| ≤ 3σ(x)
0 else

Q4(x) =
{

1 if |E(x)| ≤ 4σ(x)
0 else



Q5(x) = e

„
− E(x)2

2σ(x)2

«

where min(x) is the minimum value of the pixel x over all the residual images,
max(x) is the maximum value and σ(x) is the standard deviation. One of each
parameter (min, max and σ) are computed for each pixel x of the residual image.

The parameters of the Qi functions could be learned from a random amount
of residuals generated when the AAM fitting algorithm is run on unoccluded
images. However, a residual image generated when the shape model is far from
the solution is totally different from a residual image generated when the model
is close to the solution.

That is why the parameters used in the computation of the Qi functions have
to depend on the distance to the solution: they have to be high (resulting in a
permissive toward errors Qi function) when the model is far from the solution
and low when it gets closer (resulting in a strict function).

3.2 Partitioned Training Sets

To explicit the link between the model parameters and the distance to the solu-
tion, we conducted the following experiment.

A set of residual images are generated: the (non-weighted) AAM fitting algo-
rithm is launched from perturbed ground truth shapes 15 iterations until conver-
gence. To initialize the AAM, each vertex coordinate is perturbed by a Gaussian
noise with 10 different variances (between 5 and 30), and the ps parameters are
obtained by projecting the perturbed shape model onto the shape basis S. It is
launched 4 times on 25 images that belong to the AAM training set. The distance
to the solution, computed by the average Euclidean distance of the shape model
vertices to the optimal ground truth shape vertices, and the residual image are
stored at each iteration.

Instead of computing the model parameters (min(x), max(x) and σ(x)) on
all the residual images, we form 15 partitions by regrouping residual images
according to their corresponding distance to the solution. Each partition Pi

contains 210 residual images and can be characterized by its minimum d−i and
maximum distance d+

i to the solution. The model parameters are then learned,
for each pixel x, on all the residuals of each partition.

On figure 2 are represented standard deviations σ(x) learned on each parti-
tion. For visualization purpose, only the average standard deviation σ, computed
over all the pixels x is plotted.

3.3 Model Parameter Approximation

When the fitting algorithm is run on test face images, that might be occluded,
the model distance to the solution is difficult to estimate. In the unoccluded
case, a rough estimate of the distance to the solution can be extracted from the
residual image. Such an information is not reliable anymore in the occluded case,
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Fig. 2. Average standard deviation learned for each partition.

because the residual image reflects either errors caused by a misplacement of the
model or errors caused by occlusions.

However, we assume that we can rely on the iteration number of the fitting
algorithm to select the appropriate partition, especially if the model distance to
the solution in the occluded case is lower than the maximum distance used to
collect residuals in the first partition.

To validate this assumption, we proceed to the test that follows. Using vari-
ances computed for each of the 15 partitions, we test the weighted fitting al-
gorithm launched for 20 iterations from Gaussian perturbed optimal positions
(with a variance of 20) on occluded (known) images (25% of the input image is
covered with 8× 8 blocks of pixels of random intensity). Note that the amount
of shape perturbations is less important than the amount used in the partition
construction. Among all the Qi(x) functions, we use only Q3(x) to compute the
confidence map at each iteration, for we are only interested in how to select its
parameter, not how it performs. Different ways of getting the variance at each
iteration are tested:

– Sreal: selection from Pi where the real distance to the solution dmodel is
bounded by the distance range of Pi: [d−i , d+

i ]; for comparison purpose;
– Sit: selection from Pi where i is the current iteration (and i = 15 for iterations

15 to 20);
– Sf : selection from P1;
– Sm: selection from P7;
– Sl: selection from P15.

The results on Fig. 3 show clearly that the best choice for the residual model
parameter computation is Sreal. It is not usable in practice (the ground truth
shape is not a priori known), but we can rely on the Sit approximation. As a
comparison, results are given for the unoccluded case and for fixed variances
(Sf , Sm and Sl).
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Fig. 3. Average behavior of the fitting algorithm for the reference unoccluded case,
and for the occluded case with different computations of the variance.

In [5], variances are fixed and computed on residual images obtained from
the converged AAM, which corresponds here to the Sl selection strategy. When
observing the mean distance obtained after 20 iterations, the proposed Sit vari-
ance selection strategy results in a distance divided by about 2 compared to
Sl.

3.4 Choice of the Parametric Model

With the previous result we can then test what is the best way to compute the
confidence map at each iteration.

For that purpose, we proceed to the following experiment: the weighted AAM
fitting algorithm is launched on images of known faces, covered with a varying
amount of occlusions, from a Gaussian perturbed shape (we use a variance of 20
for each vertex coordinate). We test each of the Qi confidence map computation
functions with a parameter choosed using Sit.

The convergence frequency is determined by computing the number of fittings
that result in a shape with a distance to the ground truth lower than 2 pixels.

Results are summarized on Fig. 4. The Q4 function clearly shows the best
results. All the other functions perform worse, except for the function Q1 that
seems to be a good detector in the case of low occlusion rate and a very bad
one in the case of high occlusion rate. Q1 relies on computation of minimum and
maximum value, which are very robust measures compared to variance, that is
why the behavior of Q1 is not always reliable.

4 Robust Tracking Strategy

The goal of the tracking algorithm is to take occlusion into consideration as
much as possible. However, on some video frame, occlusions are too important
to expect good fitting results, because too many pixels are considered unreliable.
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Fig. 4. Characterization of the confidence map computations. Average distance to the
solution across iterations for 5% and 50% of occlusions (top curves) and convergence
frequency (bottom curve).



In such a case, the fitting algorithm is prone to divergence and the resulting shape
configuration could be a bad initialization if used directly in the following frame.

That is why we propose to rely on a measure of divergence and on a rigid
AAM to initialize the model.

The goal is to avoid bad configurations of the shape model in order not to
perturb the fitting process on subsequent frames. We detect such bad config-
urations by detecting shapes that are not statistically well explained. For that
purpose, we compare the shape parameters ps to their standard deviations σi,
previously learned from the shape training set. The divergence is decided, if:

1
n

n∑
i=1

|ps
i |

σi
> ρ1 or max

i=1,...,n

{
|ps

i |
σi

}
> ρ2

The thresholds ρ1 and ρ2 are determined empirically and can be high (here we
choose ρ1 = 2.5 and ρ2 = 7.0). The divergence is only tested after ten iterations,
for the model deformations that occur during the first iterations can lead to
convergence.

On a frame, if convergence is detected, the final shape configuration is stored
and serves as an initialization for the next frame.

If divergence is detected, we rely for the following frame on a very robust
tracker: an AAM build by retaining only the geometric deformation vectors. It
is represented by the mean shape that can only vary in scale, in-plane rotation
and position but not in facial deformations. Such a model gives a rough estimate
of the face configuration that can be used as an initialization for the non-rigid
AAM. It avoids the non-rigid shape model to being attracted by local minima.
The rigid AAM fitting algorithm uses also a confidence map to take occlusions in
consideration. However, the confidence maps computed for the non-rigid AAM
are too strict for the rigid AAM, we thus use a coarse occlusion detector (for
example, the confidence map computed over the second partition for the non-
rigid AAM).

The rigid AAM fitting is launched for 5 iterations from the last configuration
that converged. The non-rigid AAM fitting algorithm is then launched from the
resulting position.

We test this tracking algorithm on a video sequence of about 500 frames
where signs frequently occlude the signer’s face.

We show some typical results on selected frames (see figure 5). Blocks of
white pixels represent areas of occlusions detected by our method. Compared
to a naive tracker, the AAM always converges to an accurate configuration on
unoccluded frames that occur after an occluded one.

5 Conclusion

We have presented a way to track facial deformations that occur on a video,
taking into account hand occlusions by means of an Active Appearance Model
of a face, a robust optimization scheme that down-weights pixel contributions
in the presence of occlusions, an optimal way to compute the pixel confidence



(a) (b) (c) (d)

Fig. 5. Video tracking results. (a) Example of a good occlusion detection. (b) Example
of a divergence. Divergence on a frame (c) and convergence on the next frame (d).

map and a robust tracking strategy based on a measure of divergence and a rigid
AAM.

The pixel confidence map is computed based on a model of residual images.
We use one model per iteration of the fitting algorithm, rather than one fixed
model. This is clearly a better choice that improves occlusion detection, com-
pared to earlier work.

Concerning the tracking test, experiments on convergence frequency of the
algorithm with respect to the occlusion rate have still to be conducted.

The video sequence used to test the tracking algorithm contains only weak
out-of-plane rotations. This is why the rigid 2D AAM can give a good initial-
ization configuration for the non-rigid AAM fitting algorithm. On realistic sign
language videos however, out-of-plane rotations may be important and we would
have to rely on a rigid AAM that can take 3D pose into consideration.

We use the most accurate and most time-consuming robust variant of the
inverse compositional algorithm. We have to investigate if approximations pre-
sented in [3], [6] or [5] could be applied to obtain an accurate and efficient facial
deformation tracker.
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