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Motivations

■ Use of Active Appearance Models within the inverse compositional framework [Baker & Matthews].

■ Problem of appearance varying faces: fitting unknown faces or tracking appearance varying sequences.

■ The best known solution (simultaneous inverse compositional) lacks efficiency.

■ Intention: Decrease the computational cost of the simultaneous algorithm.

■ The method test leads to a new definition of the ground truth shape.

AAM for facial modelling

■ A facial AAM combines :

1. a shape s = s0 +
∑n

i=1 visi,

2. an appearance A(x) = A0(x) +
∑m

i=1 λiAi(x).

with the si and Ai(x) variation modes obtained from a previously labelled image collection.

■ Given initial parameters [v0, λ0], the fitting goal is to find [v, λ] that best models the face on an input image.

Original vs. proposed solution

Illustration of the simultaneous inverse compositional algorithm

The original step, Hessian-based [Baker & Matthews]

[∆v, ∆λ]T = −H−1
∑

x

SDT (x)E(x)

where
H =

∑

x

SD(x)TSD(x)

and is computed in O((n + m)2N)
for n shape vectors, m appearance vectors and a s0 image resolution of N pixels.

The proposed computation, regulation based

[∆v(t), ∆λ(t)]T = −C(t− 1)⊙
∑

x

SDT (x)E(x)

The ci coefficients are computed in the following manner:

for i = 1 to n + m do
if ∆ωi(t− 1)∆ωi(t) > 0 then

ci(t)← ci(t− 1)ηinc
else

ci(t)← ci(t− 1)/ηdec
end if

end for

where the computation is negligible compared to O((n + m)2N).
∆ωi stands for either ∆vi or ∆λi. The parameters ηinc and ηdec are empirically fixed.

Evaluation protocol

■ Performance comparison between the Hessian-
based algorithm and our version.

■ Test of two fitting features on both known and
unknown frontal neutral faces: accuracy and
efficiency.

■ Introduction of a statistical-based method to build the ground truth
data. Each face has been manually labelled 11 times.

■ Score a labelling with respect to the variance of each vertex coordi-
nates.

The fitting error ei(s) of a shape s on an image i, is defined by the average of
the Mahalanobis distances between the obtained vertex location sv and its ground
truth definition µi,v, for all nV vertices:

ei(s) =
1

nV

nV
∑

v=1

√

(sv − µi,v)TΣ−1
v (sv − µi,v) Representation of the covariance Σv by an ellipse, for

each vertex, here displayed on the mean face
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Fitting error evolution accross time.

■ Iteration time is different for the regulated (faster)
and the Hessian-based. Algorithm performances
are thus compared at same units of processing
time.

■ In the known faces test, the Hessian-based algo-
rithm performs better than the regulated, as it
reaches faster a lower minimum.

■ In the unknown faces test, minima are reached
after an equivalent processing time for the two al-
gorithms. The fitting quality is almost equivalent.

➊ ➋

➌ ➍

➊ and ➋ are typical fittings obtained

on known faces by the Hessian-based

and the regulated algorithms.

➌ and ➍ are the best fittings ob-

tained on unknown faces for both the

Hessian-based and the regulated.

Future works

■ In the unknown faces test, the rise of fitting error is due to the inability of algorithms to deal with non-
Gaussian noise. We will investigate on the use of a robust error function.

■ The processing time to reach a minimum has to be compared for different values of n, m and N .

■ It has to be compared to other variants of the inverse compositional algorithm, particularly the steepest
descent minimization and the diagonal Hessian approximation.


